3.4太陽能熱泵(SolarHeatPump)
太陽能熱泵(SolarHeatPump)以太陽能集熱器作為熱泵系統的低溫溫度。圖3是一種方案的太陽能熱泵系統流程示意。這是一種能夠從更低溫度的環境中有效吸取熱量的系統。在系統做熱泵運行時,儲水槽中的水作為系統的低溫熱源。如果儲水槽容量設計合理的話,即使水溫降低到5℃時,仍然可以有效使用,而且,由于水溫較低,使得太陽能集熱器能夠在較低的溫度下工作,從而增加了它的熱吸收率。 太陽能熱泵的不足在于它無法同時實現有效制冷循環而成為實際上的單用系統。
此外,如果太陽能熱泵同時提供生活用熱水的話,需要考慮兩個系統的分配與轉換問題。同時,在高緯度地區使用時,存在生活用水溫度太高的可能性,為此,在系統中必須考慮采取防高溫水灼傷等措施。
4部分熱泵新技術簡介
熱泵新技術研究主要是圍繞提高熱泵系統的熱力學效率、提高熱泵系統的環境友善程度和處理空氣品質等方面展開的。部分技術已經應用于相關產品及系統中。相關新技術主要包括:
①室外側換熱器結霜控制、表面納米材料及其表面修飾工藝技術通過對室外側換熱器的外表面進行納米材料修飾,使得霜水呈球狀凝結,從而減小凝霜或凝水在換熱器外表面凍結的機會。
②大壓差、非穩定運行條件下高效熱泵壓縮機技術主要包括渦旋壓縮機柔性導入結構、機體噴液降溫及吸排氣壓力自我辨識和自適應分液調節技術,從而適應大壓差、非穩定運行條件。
③熱泵自適應空況控制技術根據熱泵系統熱動力運行特性,確定系統的自我狀況診斷和自適應空況調節控制。從該項技術在ASHP系統中應用效果看,能夠明顯提高系統的SEER指標。配合新的流程[11],該項技術在保證ASHP系統低溫環境條件下的有效供熱方面,效果明顯。
④納米填料靜音技術通過納米材料及微納米填料,消除工質在節流過程、冷凝過程及蒸發過程中由于相變而導致相界間能量傳遞產生的噪聲和振動。
⑤可吸入顆粒物納米催化及分解技術通過在熱泵與空調系統空氣處理末端進、出風界面上進行綱伙材料修飾,使空氣中的可吸入顆粒物經過納米催化分解而使空氣得以凈化。
⑥全空氣熱泵技術采用濕空氣的跨臨界膨脹的熱力循環的全空氣熱泵空調系統。空氣同時作為工作介質和能量交換介質。采用無油壓縮設備及工藝技術,將使得此系統有著極好的環境友善性能。
⑦納米催化高效吸收技術利用具有均勻性網絡結構的低密度多孔性納米材料作為吸收器和發生器的填料,可以提高吸收效率和發生效率及速率,從而使得吸收時制冷機或吸收式熱泵機組的小型化稱為可能。以三氯化鐵和氫氧化鈉為原料,利用溶膠-凝膠過程和超臨界干燥技術,經過鐵基氣溶膠基本粒子b-FeOOH,再經高溫處理后轉化為a-Fe2O3-SiO2為基質的低密度多孔性納米材料是一種可能的納米催化高效吸收填料。
⑧高效率、低污染燃燒技術燃燒器表面經過鈦基納米粒子修飾后,在納米粒子的催化作用,可以對燃燒反應條件進行控制和調節,從而使天然氣的燃燒更快、更充分,與此同時,抑制氮氧之間的反應,從而使燃燒反應中間產物(及污染物)減少,提高燃燒效率。
⑨熱泵壓縮機柔性吸、排氣靜音技術壓縮機式制冷或熱泵系統噪聲與振動的主要源泉。壓縮機吸、排氣環節所產生的噪聲頻率特性以其結構及材料不同而不同。實驗證明,采用柔性吸、排氣通道結構,可以減少制冷或熱泵機組噪聲,并改善它在系統中的傳輸特性。太陽能熱泵的不足在于它無法同時實現有效制冷循環而成為實際上的單用系統。
此外,如果太陽能熱泵同時提供生活用熱水的話,需要考慮兩個系統的分配與轉換問題。同時,在高緯度地區使用時,存在生活用水溫度太高的可能性,為此,在系統中必須考慮采取防高溫水灼傷等措施。
4部分熱泵新技術簡介
熱泵新技術研究主要是圍繞提高熱泵系統的熱力學效率、提高熱泵系統的環境友善程度和處理空氣品質等方面展開的。部分技術已經應用于相關產品及系統中。相關新技術主要包括:
①室外側換熱器結霜控制、表面納米材料及其表面修飾工藝技術通過對室外側換熱器的外表面進行納米材料修飾,使得霜水呈球狀凝結,從而減小凝霜或凝水在換熱器外表面凍結的機會。
②大壓差、非穩定運行條件下高效熱泵壓縮機技術主要包括渦旋壓縮機柔性導入結構、機體噴液降溫及吸排氣壓力自我辨識和自適應分液調節技術,從而適應大壓差、非穩定運行條件。
③熱泵自適應空況控制技術根據熱泵系統熱動力運行特性,確定系統的自我狀況診斷和自適應空況調節控制。從該項技術在ASHP系統中應用效果看,能夠明顯提高系統的SEER指標。配合新的流程[11],該項技術在保證ASHP系統低溫環境條件下的有效供熱方面,效果明顯。
④納米填料靜音技術通過納米材料及微納米填料,消除工質在節流過程、冷凝過程及蒸發過程中由于相變而導致相界間能量傳遞產生的噪聲和振動。
⑤可吸入顆粒物納米催化及分解技術通過在熱泵與空調系統空氣處理末端進、出風界面上進行綱伙材料修飾,使空氣中的可吸入顆粒物經過納米催化分解而使空氣得以凈化。
⑥全空氣熱泵技術采用濕空氣的跨臨界膨脹的熱力循環的全空氣熱泵空調系統。空氣同時作為工作介質和能量交換介質。采用無油壓縮設備及工藝技術,將使得此系統有著極好的環境友善性能。
⑦納米催化高效吸收技術利用具有均勻性網絡結構的低密度多孔性納米材料作為吸收器和發生器的填料,可以提高吸收效率和發生效率及速率,從而使得吸收時制冷機或吸收式熱泵機組的小型化稱為可能。以三氯化鐵和氫氧化鈉為原料,利用溶膠-凝膠過程和超臨界干燥技術,經過鐵基氣溶膠基本粒子b-FeOOH,再經高溫處理后轉化為a-Fe2O3-SiO2為基質的低密度多孔性納米材料是一種可能的納米催化高效吸收填料。
⑧高效率、低污染燃燒技術燃燒器表面經過鈦基納米粒子修飾后,在納米粒子的催化作用,可以對燃燒反應條件進行控制和調節,從而使天然氣的燃燒更快、更充分,與此同時,抑制氮氧之間的反應,從而使燃燒反應中間產物(及污染物)減少,提高燃燒效率。
⑨熱泵壓縮機柔性吸、排氣靜音技術壓縮機式制冷或熱泵系統噪聲與振動的主要源泉。壓縮機吸、排氣環節所產生的噪聲頻率特性以其結構及材料不同而不同。實驗證明,采用柔性吸、排氣通道結構,可以減少制冷或熱泵機組噪聲,并改善它在系統中的傳輸特性。